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1 Capacity of Wide Sense Stationary Processes and Parallel
Gaussian channels

1.1 Wide sense stationary processes

Definition 1.1. A stationary stochastic process (X(t).t ∈ R) is a collection of random
variables X(t) such that

(X(t1), . . . , X(td))
d
= (X(t1 + s), . . . , X(td + s)).

The correct thing to study to understand spectral properties of such a process is the
autocorrelation function.

Definition 1.2. The autocorrelation function is

Rx,x(s, t) := E[X(t)X(s)] = Rx(t− s).

By stationarity, this only depends on t− s.

Definition 1.3. A wide sense stationary (WSS) process is a process for which
Rx,x(t, s) depends only on t− s (and E[X(t)] is constant).

Definition 1.4. The power spectral density of the noise is

Sx,x(ω) =

∫ ∞
−∞

Rx,x(t)e−iωτ dτ,

the Fourier transform of the autocorrelation function.1

If we input a WSS into a linear time invariant filter, which outputs a WSS, then we
have the following magic formula:

Sy,y(ω) = |H(ω)|2Sx,x(ω).

1Professor Anantharam uses j instead of i, but I disagree.
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We should think of Sx,x as telling us how much noise sits at each frequency.

Definition 1.5. If Sx,x(ω) is constant, then (X(t), t ∈ R) is called white noise. If in
addition, (X(t), t ∈ R) is a Gaussian process, i.e. (X(t1), . . . , X(td)) is jointly Gaussian for
all t1, . . . , td, we call this white Gaussian noise.

Assuming E[X(t)] = 0 for all t, this is characterized by the properties

1. ∫ ∞
−∞

X(t)f(t) dt ∼ N(0, σ2, if

∫ ∞
−∞

f2(t) dt,

2. ∫ ∞
−∞

f(t)g(t) dt = 0 =⇒
∫ ∞
−∞

X(t)f(t) dtq
∫ ∞
−∞

X(t)g(t) dt.

1.2 Connection between WSSs and AWGNs

Last time, we saw that the Shannon capacity of a Power-constrained AWGN is

1

2
log

(
1 +

P

σ2

)
bits per use.

This is interesting because it is a model for if you input a power-constrained waveform
X (bandlimited to W Hz and time limited to T seconds) and the noise Z is additive and
white Gaussian noise. Here, the output is Y (t) = X(t) + Z(t).

The number of degrees of freedom, which represents the dimension of our input, is
intuitively 2WT . Nyquist sampling theory tells us that 2W samples per second is needed
to recover a signal which is bandlimited to W . The Landau-Pollack paper makes this
precise via prolate spheroidal functions.

The functions for which a fraction of at least 1 − ε2T of the entropy should be on
[−T/2, T/2] and which are bandlimited to W can be expressed in terms of 2WT +constant
prolate spheroidal functions, capturing at least 1 − cε2T of the energy. Here, εT → 0 as
T →∞.

The number of uses of the AWGN is replaced by 2WT , and the power on a per use
basis is replaced by power on a per degree of freedom basis. Let P denote power on a per
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unit time basis; then the power on a per degree of freedom basis is P
2W . The noise power σ2

on a per use basis is replaced by the noise power per degree of freedom, N0
2 . The formula

we get is

1

T

(
2WT

1

2
log

(
1 +

P/(2W )

(N0/2)

))
= W log

(
1 +

P

N0W

)
bits per unit time.

Remark 1.1. Here is a practically important observation for space communication: For
fixed P ,

lim
W→∞

W log

(
1 +

P

N0W

)
=

P

N0
log2 e ≈ 1.44

P

N0
bits per second.

So even with infinite bandwidth, the communication rate is power-limited.

In situations where bandwidth is limited (e.g. terrestrial communication), we call R/W
(denoted r) is called the spectral efficiency (bits/sec per Hz), and P/(N0R) (denoted
Eb/N0) is called the signal to noise per bit; here R is the rate of communication.
Shannon’s theorem for the white Gaussian noise waveform channel can be written as saying:
We must have

r < log

(
1 +

Eb
N0

r

)
.

This is considered a very insightful restatement of R < W log(1 + P
N0W

). Here is a graph
(in a log-log scale) of the region in which communication is possible:

What is astonishing is that you need at least a minimum value of Eb/N0 to communicate
at all!
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1.3 The Shannon capacity of a parallel Gaussian channel

Leading up to the waveform channel Shannon capacity over colored noise, we’ll first study
the parallel Gaussian channel model. At each channel use, say at time i, we have a

vector of inputs (X
(1)
i , . . . , X

(K)
i ), each of which has some added independent Gaussian

noise Z
(k)
i . We receive a vector of outputs (Y

(1)
i , . . . , Y

(K
i ). Here, Z

(k)
i ∼ N (0, σ2k) are

independent over i and k for k = 1, . . . ,K and i = 1, 2, . . . .
When coding at block-length n, we require for each message m ∈ [Mn] that

n∑
i=1

K∑
k=1

(x
(k)
i (m))2 ≤ nP.

where the term in the sum is the total energy in the codeword for message m.

Theorem 1.1. In the parallel Gaussian channel model, the Shannon capacity is

sup∑K
k=1 E[(X(k))2]≤P

I(X(1), . . . , X(K);Y (1), . . . , Y (K))

We will discuss this further next time.
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